Department of Mathematics and Statistics
Lake shore campus | 1032 W. Sheridan Road | Chicago, Illinois 60660
Phone 773.508.3558 | Fax 773.508.2123 | www.math.luc.edu

Common final exam for Math 118, December 15, 2021.

YOUR NAME: SECTION:

INSTRUCTOR:

DID YOU HAVE ANOTHER EXAM 5:30-7:30 TODAY?

Directions:

- Print your name, section number and your instructor's name on this page in the space provided.
- This exam has 12 questions. Please check that your exam is complete.
- You have two hours to complete this exam. It will be graded out of 100 points.
- Show your work. Answers (even correct ones) without the corresponding work will receive no credit.
- You may use a calculator and the list of equations provided by the Department.
- When using decimals round your answers till three decimal places.
- Use of notes, books, any internet resources and electronic devices is NOT allowed.
- You may not communicate with anyone besides the

Problem	Score
1	$/ 12$
2	$/ 9$
3	$/ 8$
4	$/ 6$
5	$/ 6$
6	$/ 12$
7	$/ 8$
8	$/ 6$
9	$/ 8$
10	$/ 8$
11	$/ 5$
12	$/ 12$

Good luck!

1. (Points: 12) The number of asthma sufferers in the world was about 84 million in 1990 and 334 million in 2012. Let N represent the number of asthma sufferers (in millions) worldwide t years after 1990 .
(a) Model N as a linear function of year t after 1990.

Answer (3 points): $N=84+11.364 \cdot t$, slope $=11.364$, between 1990 and 2012 the number of asthma sufferers is increasing in average by 11.364 million people every year.
(b) Model N as an exponential function of year t after 1990.

Answer (3 points): $N=84 \cdot(1.065)^{t}$, growth factor $=1.065$, between 1990 and 2012 the number of asthma sufferers is increasing by 6.5% every year.
(c) How many asthma sufferers are predicted worldwide in 2020 with the linear model?
Answer (3 points): 424.909 million people.
(d) How many asthma sufferers are predicted worldwide in 2020 with the exponential model?
Answer (3 points): 551.740 million people.
2. (Points: 9) Rank the following three bank-deposit options from best to worst.
(a) Bank A: nominal rate 2% compounded daily
(b) Bank B: nominal rate 2.1% compounded monthly
(c) Bank C: nominal rate 2.05% compounded continuously

Answer (3 points for each part): Bank A: APY $=2.020 \%$, Bank B: APY $=2.120 \%$, Bank C: APY $=2.071 \%$. Bank B is the best option, then Bank C, then bank A.
3. (Points: 8) Technetium-99m is a radioactive substance used to diagnose brain diseases. Its half-life is approximately 6 hours. Initially you have 200 mg of technetium- 99 m .
(a) Write an equation that gives the amount of the substance remaining after t hours. Answer (4 points): $Q(t)=200 \cdot(0.891)^{t}$.
(b) Determine the number of hours needed for your sample to decay to 120 mg . Answer (4 points): $t=4.422$ hours.
4. (Points: 6) What is the long-run behavior of the function given below?
(a) $\quad x \rightarrow \infty, \quad y=\frac{x(x+6)(x-9)}{4+x^{2}} \longrightarrow$

Answer (3 points):

$$
y=\frac{x(x+6)(x-9)}{4+x^{2}} \longrightarrow \infty
$$

(b) $\quad x \rightarrow-\infty, \quad y=\frac{x(x+6)(x-9)}{4+x^{2}} \longrightarrow$

Answer (3 points):

$$
y=\frac{x(x+6)(x-9)}{4+x^{2}} \longrightarrow-\infty
$$

5. (Points: 6)
(a) Find the angle between 0° and 360° (but not 240°) that has the same cosine as 240°.
Answer (3 points): 120°.
(b) Find the angle between 0° and 360° (but not 240°) that has the same sine as 240°. Answer (3 points): 300°.
6. (Points: 12) The pressure, P (in $\mathrm{lbs} / \mathrm{ft}^{2}$), in a pipe varies over time. Three times an hour, the pressure oscillates from a low of 90 to a high of 230 and then back to a low of 90 . The pressure at $t=0$ is 90 .
(a) Graph $P=f(t)$, where t is time in minutes.
(b) Find a possible formula for $P=f(t)$.
(c) Using your graph from part (a) $P=f(t)$ for $0 \leq t \leq 20$, estimate when the pressure first equals $125 \mathrm{lbs} / \mathrm{ft}^{2}$.

Answer (4 points): (a)

Answer (4 points): (b) $P=-70 \cos \left(\frac{\pi}{10} t\right)+160$.
Answer (4 points): (c) $t=3.333$ minutes.
7. (Points: 8) If $\cos (\alpha)=-\sqrt{3} / 5$ and α is in the third quadrant,
(a) find the exact value for $\sin (\alpha)$,

Answer (4 points): (a) $\sin (\alpha)=-\frac{\sqrt{22}}{5}$.
(b) find the exact value for $\tan (\alpha)$.

Answer (4 points): (b) $\tan (\alpha)=\sqrt{\frac{22}{3}}$.
8. (Points: 6) A surveyor must measure the distance between the two banks of a straight river. She sights a tree at point T on the opposite bank of the river and drives a stake into the ground (at point P) directly across from the tree. Then she walks 50 meters upstream and places a stake at point Q. She measures angle $P Q T$ and finds that it is 58°. Find the width of the river.

Answer (6 points): $d=50 \cdot \tan \left(58^{\circ}\right)=80.017$ meters.
9. (Points: 8) Find the missing sides, a, b, and angle B.
$A=12^{\circ}, C=150^{\circ}, c=5$.

Answer: (2 points): $B=18^{\circ}$; (3 points): $C B=2.079$; (3 points): $A C=3.090$.
10. (Points: 8) Use the graph to approximate all solutions to the equation $\sin (t)=\sqrt{2} / 2$ on $0 \leq t \leq 4 \pi$.

Answer: (2 points each): $\pi / 4,3 \pi / 4,9 \pi / 4,11 \pi / 4$.
11. (Points: 5) Decompose the function

$$
f(x)=5 \sqrt{x+3}
$$

into a composition of two new functions u and v, where v is the inside function, that is $f(x)=u(v(x))$, so that $u(x) \neq x$ and $v(x) \neq x$.
Answer: (5 points any correct combination):
$v(x)=x+3$ and $u(x)=5 \sqrt{x}$ or
$v(x)=\sqrt{x+3}$ and $u(x)=5 x$.
12. (Points: 12) Let $P=f(t)=37.8(1.044)^{t}$ be the population of a town (in thousands) in year t.
(a) Evaluate $f(50)$. Describe in words what this quantity tells you.

Answer: (4 points): The population size is 325.474 thousand people at $t=50$ years.
(b) Find a formula for $f^{-1}(P)$ in terms of P.

Answer: (4 points): $f^{-1}(P)=\frac{\ln (P)-\ln (37.8)}{\ln (1.044)}$.
(c) Evaluate $f^{-1}(50)$. Describe in words what this quantity tells you.

Answer: (4 points): The population reaches 50 thousand people in 6.496 years.

